Gauss Elimination Method

Derivation of Gauss Elimination Method:

Consider the following system of linear equations:

$$
\begin{aligned}
& A_{1} x+B_{1} y+C_{1} z=D_{1} \ldots \ldots \text { (1) } \\
& A_{2} x+B_{2} y+C_{2} z=D_{2} \ldots \ldots \ldots \text { (2) } \\
& A_{3} x+B_{3} y+C_{3} z=D_{3} \ldots \ldots \ldots \text { (3) }
\end{aligned}
$$

In order to apply Gauss elimination method, we need to express the above three linear equations in matrix form as given below:

| $\mathrm{A}=$ | $\mathrm{B}=$ |
| :---: | :---: | :---: |
| $\left[\begin{array}{lll}A 1 & B 1 & C 1 \\ A 2 & B 2 & C 2 \\ A 3 & B 3 & C 3\end{array}\right]$ | $\left[\begin{array}{c}D 1 \\ D 2 \\ D 3\end{array}\right]$ |

Arrange matrices A and B in the following form (augmented matrix):

$$
\left\{\begin{array}{lll|l}
A 1 & B 1 & C 1 & D 1 \\
A 2 & B 2 & C 2 & D 2 \\
A 3 & B 3 & C 3 & D 3
\end{array}\right\}
$$

Now, perform the following elementary row operations till it is reduced to echelon form by:

1) Exchanging or swapping two rows
2) Adding the certain multiple of one row to another row
3) Multiplying a row by non-zero number

This procedure is repeated until the augmented matrix is reduced to following echelon form:

$$
\left\{\begin{array}{lll|l}
1 & 0 & 0 & a \\
0 & 1 & 0 & \mathbf{b} \\
0 & 0 & 1 & c
\end{array}\right\}
$$

Thus, the solution of above system of linear equation is (a, b, c) i.e. $x=a, y=b$ and $\mathrm{z}=\mathrm{c}$.

Ex: Use the Gauss Elimination Method to find the solution for these equations:

$$
\begin{align*}
& 3 x+4 y+6 z=3 \ldots \ldots(1) \tag{1}\\
& 2 x-6 y-7 z=10 \ldots \ldots(2) \\
& -x+8 y+8 z=12 \ldots \ldots(3)
\end{align*}
$$

s\% Gauss Elimination Method
$a=\left[\begin{array}{llllllllllll}3 & 4 & 6 & 3 ; & 2 & -6 & -7 & 10 ; & -1 & 8 & 8 & 12\end{array}\right] ;$
$[\mathrm{m}, \mathrm{n}]=\operatorname{size}(\mathrm{a})$;
s\% Exchanging or swapping two rows
\%\% Adding the certain multiple of one row to another row
for $j=1: m-1$
for $z=j+1: m$
if $a(j, j)=0$
$t=a(j,:) ; a(j,:)=a(z,:) ;$
$a(z,:)=t$;
end
end
for $i=j+1: m$
$a(i,:)=a(i,:)-a(j,:) *(a(i, j) / a(j, j)) ;$
end
end
क\% 옹 Multiplying a row by non-zero number
$\mathrm{x}=\mathrm{zeros}(1, \mathrm{~m})$;
for $s=m:-1: 1$
$\mathrm{c}=0$;
for $k=2: m$
$c=c+a(s, k) * x(k) ;$
end
$x(s)=(a(s, n)-c) / a(s, s) ;$
end
disp('Gauss elimination method:');
a
x^{\prime}
\%\% Gauss Elimination Method
$a=[3463 ; 2-6-710 ;-18812]$;
[m,n]=size(a);
\%\% Exchanging or swapping two rows
\%\% Adding the certain multiple of one row to another row

```
for \(\mathrm{j}=1\) :m-1
    for \(\mathbf{z = j + 1 : m}\)
        if \(a(j, j)==0\)
            \(\mathrm{t}=\mathrm{a}(\mathrm{j},: \mathrm{)} ; \mathrm{a}(\mathrm{j},:)=\mathrm{a}(\mathrm{z},: \mathrm{)}\);
            a(z,:)=t;
        end
    end
    for \(i=j+1\) :m
        \(a(\mathrm{i},:)=\mathrm{a}(\mathrm{i},: \mathrm{I})-\mathrm{a}(\mathrm{j},:)^{*}(\mathrm{a}(\mathrm{i}, \mathrm{j}) / \mathrm{a}(\mathrm{j}, \mathrm{j})) ;\)
    end
end
```

\%\% Multiplying a row by non-zero number
x=zeros(1,m);
for $s=m:-1: 1$
$\mathrm{c}=0$;
for $\mathrm{k}=2$:m
$\mathrm{c}=\mathrm{c}+\mathrm{a}(\mathrm{s}, \mathrm{k})^{*} \mathrm{x}(\mathrm{k})$;
end
$x(\mathrm{~s})=(\mathrm{a}(\mathrm{s}, \mathrm{n})-\mathrm{c}) / \mathrm{a}(\mathrm{s}, \mathrm{s})$;
end disp('Gauss elimination method:');
a
x^{\prime}

ANOTHER METHOD TO SOLVE LINEAR EQUATION

Ex: Consider the system of equations:

$$
\begin{align*}
& 3 x+4 y+6 z=3 \ldots \ldots(1) \tag{1}\\
& 2 x-6 y-7 z=10 \ldots \ldots(2) \\
& -x+8 y+8 z=12 \ldots \ldots(3)
\end{align*}
$$

Find the solution for x, y, z to the system of equations.

$$
\begin{aligned}
& A=[346 ; 2-6-7 ;-188] ; \\
& B=[3 ; 10 ; 12] ; \\
& X=A \backslash B
\end{aligned}
$$

ANOTHER METHOD TO SOLVE LINEAR EQUATION

Ex: Consider the system of equations:

$$
\begin{aligned}
& 3 x+4 y+6 z=3 \ldots \ldots .(1) \\
& 2 x-6 y-7 z=10 \ldots \ldots(2) \\
& -x+8 y+8 z=12 \ldots . . .(3)
\end{aligned}
$$

Find the solution for x, y, z to the system of equations.
syms xyz
eq1 = '3* $x+4^{*} y+6^{*} z=3^{\prime} ;$
eq2 = '2* $x-6^{*} y-7^{*} z=10 ' ;$
eq3 $={ }^{\prime}-1^{*} x+8^{*} y+8^{*} z=12$ ';
[$x, y, z]$ = solve(eq1, eq2, eq3)

